49 research outputs found

    Unsaturated fatty acids are inhibitors of bacterial conjugation

    No full text
    This report describes a high-throughput assay to identify substances that reduce the frequency of conjugation in Gram-negative bacteria. Bacterial conjugation is largely responsible for the spread of multiple antibiotic resistances in human pathogens. Conjugation inhibitors may provide a means to control the spread of antibiotic resistance. An automated conjugation assay was developed that used plasmid R388 and a laboratory strain of Escherichia coli as a model system, and bioluminescence as a reporter for conjugation activity. Frequencies of conjugation could be measured continuously in real time by the amount of light produced, and thus the effects of inhibitory compounds could be determined quantitatively. A control assay, run in parallel, allowed elimination of compounds affecting cell growth, plasmid stability or gene expression. The automated conjugation assay was used to screen a database of more than 12 000 microbial extracts known to contain a wide variety of bioactive compounds (the NatChem library). The initial hit rate was 1·4 %. From these, 48 extracts containing active compounds and representing a variety of organisms and extraction conditions were subjected to fractionation (24 fractions per extract). The 52 most active fractions were subjected to a secondary analysis to determine the range of plasmid inhibition. Plasmids R388, R1 and RP4 were used as representatives of a variety of plasmid transfer systems. Only one fraction (of complex composition) affected transfer of all three plasmids, while four other fractions were active against two of them. Two separate compounds were identified from these fractions: linoleic acid and dehydrocrepenynic acid. Downstream analysis showed that the chemical class of unsaturated fatty acids act as true inhibitors of conjugation

    Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects

    Full text link
    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1nm using the all-electron Full-Potential(-Linearised)-Augmented-Plane-Wave (FPLAPW) method. Emphasis is laid on the effects of curvature, the electron beam orientation and the inclusion of the core-hole on the carbon electron energy loss K-edge. The electron energy loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature induced πσ\pi-\sigma hybridisation is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron energy loss measurements. We also find that, the energy loss near edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, the ELNES of carbon nanotubes show a reduced anisotropy.Comment: 25 pages, 15 figures, revtex4 submitted for publication to Phys. Rev.

    Co-directional replication-transcription conflicts lead to replication restart

    Get PDF
    August 24, 2011Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability1, 2. To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed ribosomal RNA genes co-directional with replication3. In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10–20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign2, 4, 5, 6, 7, 8, 9. Biochemical analyses indicate that head-on encounters10 are more deleterious than co-directional encounters8 and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication, leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts probably occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.Biotechnology and Biological Sciences Research Council (Great Britain) (Grant BB/E006450/1)Wellcome Trust (London, England) (Grant 091968/Z/10/Z)National Institutes of Health (U.S.) (Grant GM41934)National Institutes of Health (U.S.) (Postdoctoral Fellowship GM093408)Biotechnology and Biological Sciences Research Council (Great Britain) (Sabbatical Visit

    Carbon nanotubes as excitonic insulators

    Get PDF
    Fifty years ago Walter Kohn speculated that a zero-gap semiconductor might be unstable against the spontaneous generation of excitons-electron-hole pairs bound together by Coulomb attraction. The reconstructed ground state would then open a gap breaking the symmetry of the underlying lattice, a genuine consequence of electronic correlations. Here we show that this excitonic insulator is realized in zero-gap carbon nanotubes by performing first-principles calculations through many-body perturbation theory as well as quantum Monte Carlo. The excitonic order modulates the charge between the two carbon sublattices opening an experimentally observable gap, which scales as the inverse of the tube radius and weakly depends on the axial magnetic field. Our findings call into question the Luttinger liquid paradigm for nanotubes and provide tests to experimentally discriminate between excitonic and Mott insulators

    Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes

    No full text
    We performed density-functional theory calculations in the local-density approximation of the structural, electronic, and optical properties of 4-Å-diameter single-walled carbon nanotubes. The calculated relaxed geometries show significant deviations from the ideal rolled graphene sheet configuration. We study the effect of the geometry on the electronic band structure finding the metallic character of the (5,0) nanotube to be a consequence of the high curvature of the nanotube wall. Calculations of the dielectric function and optical absorption of the isolated nanotubes were performed under light polarized parallel and perpendicular to the tube axis. We compare our results to measurements of the optical absorption of zeolite-grown nanotubes and are able to assign the observed maxima to the nanotube chiralities.We acknowledge the Ministerio de Ciencia y Tecnologia (Spain) and the DAAD (Germany) for a Spanish-German Research action (Grant No. HA 1999-0118). D.S.P. acknowledges support from the Spanish MCyT and CSIC under the ‘‘Ramon y Cajal’’ program. P.O. acknowledges support from Fundacion Ramon Areces (Spain), EU Project No. SATURN IST-1999-10593, and Spain-DGI Project No. BMF2000-1312-002-01

    RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD

    Get PDF
    Plasmid encoded replication initiation (Rep) proteins recruit host helicases to plasmid replication origins. Previously, we showed that RepD recruits directionally the PcrA helicase to the pC221 oriD, remains associated with it, and increases its processivity during plasmid unwinding. Here we show that RepD forms a complex extending upstream and downstream of the core oriD. Binding of RepD causes remodelling of a region upstream from the core oriD forming a 'landing pad' for the PcrA. PcrA is recruited by this extended RepD-DNA complex via an interaction with RepD at this upstream site. PcrA appears to have weak affinity for this region even in the absence of RepD. Upon binding of ADPNP (non-hydrolysable analogue of ATP), by PcrA, a conformational rearrangement of the RepD-PcrA-ATP initiation complex confines it strictly within the boundaries of the core oriD. We conclude that RepD-mediated recruitment of PcrA at oriD is a three step process. First, an extended RepD-oriD complex includes a region upstream from the core oriD; second, the PcrA is recruited to this upstream region and thirdly upon ATP-binding PcrA relocates within the core oriD

    Atomic structure of the Epstein-Barr virus portal

    No full text
    Herpesviridae is a vast family of enveloped DNA viruses that includes eight distinct human pathogens, responsible for diseases that range from almost asymptomatic to severe and life-threatening. Epstein-Barr virus infects B-cells and epithelial cells, causing infectious mononucleosis, as well as a number of cancers. Epstein-Barr infection cannot be cured since neither vaccine nor antiviral drug treatments are available. All herpesviruses contain a linear double-stranded DNA genome, enclosed within an icosahedral capsid. Viral portal protein plays a key role in the procapsid assembly and DNA packaging. The portal is the entrance and exit pore for the viral genome, making it an attractive pharmacological target for the development of new antivirals. Here we present the atomic structure of the portal protein of Epstein-Barr virus, solved by cryo-electron microscopy at 3.5 Å resolution. The detailed architecture of this protein suggests that it plays a functional role in DNA retention during packaging

    A reforma do pensamento: por uma educação que descubra as relações ocultas do saber

    Get PDF
    Reforming education involves reforming thought, and a reform of thought implies a paradigm shift in the current knowledge organization model. Complex thinking, interdisciplinary and transdisciplinary research methods and recognition of the relationship between knowledge, the knower and the surrounding medium are elements that can contribute to the construction of educational models that address the problems faced by the world nowadays. A holistic view in education contributes and commits the educator and the learner with society and its problems.Reformar la educación implica reformar el pensamiento y una reforma del pensamiento implica un cambio de paradigma en el modelo actual de organización del conocimiento. El pensamiento complejo, los métodos de investigación inter y transdisciplinar y el reconocimiento de la relación entre el saber, el sujeto cognoscente y el medio que lo rodea son elementos que pueden contribuir a la construcción de modelos educativos que respondan a los problemas que enfrenta el mundo actual. Una visión holística dentro de la educación contribuye y compromete al educador y al educando con la sociedad y sus problemáticas.Reformar a educação implica reformar o pensamento e uma reforma do pensamento implica uma mudança de paradigma no modelo atual de organização do conhecimento. O pensamento complexo, os métodos de pesquisa inter e transdisciplinar e o reconhecimento da relação entre o saber, o sujeito cognoscente e o meio que o rodeia são elementos que podem contribuir para a construção de modelos educativos que respondam aos problemas enfrentados pelo mundo atual. Uma visão holística dentro da educação contribui e compromete o educador e o educando com a sociedade e suas problemáticas
    corecore